Modular Blue Piping

High quality, lightweight aluminum piping and accessories to compliment our Perfect Air ${ }^{\circledR}$ line! Easy to install, easy to change, no welding needed. This system helps reduce installation time and labor costs.

A wide variety of accessories are available, making installation a breeze!

Understanding the Modular Blue Piping Part Numbering System

RTi +	P - Pipe			Example:
	NS - Nipple Socket		$\begin{aligned} & 12-1 / 2 " 1 \\ & 34-3 / 4^{" 1} \end{aligned}$	
		+	1-1"	
	E90-90 ${ }^{\circ}$ Elbow		$114-1 \frac{1}{4} 4$	90․ Elbow in 1⁄2": RTI-E90-12 1" Alum. Piping (19'): RTI-P1-20
	RT - Reducing Tee		112-11/2"	

Why Aluminum Piping for Compressed Air Systems?

Lower Installation Costs

More time is needed to install a compressed air system when using steel pipe compared to installing a system using other materials.

One factor behind this is that steel pipe must be threaded in order to join pipes and install the proper fittings. To properly thread steel pipe, you need special threading equipment and skilled workers to operate it. These workers cost more than unskilled workers, and that drives up installation costs.

Also remember that threading pipes is dirty work. You need cutting fluids to get a good thread, and that must be cleaned from the pipe before you can start using the system. Threading also creates a lot of debris.

Modifying and maintaining a compressed air system made with steel pipe is more difficult than modifying and maintaining systems built from other materials. One reason for this is that steel pipe is much heavier than other materials. Because steel pipe is so heavy, it requires more labor (read as higher labor costs) to handle the piping while making modifications than it would to make modifications to a system made with other piping materials.

Reduced System Leaks

Another issue with threaded connections is that they will inevitably leak. It's been estimated that 8 to 10% of the compressed air in a system will leak through threaded connections. This causes compressors to run harder and longer, driving up utility costs.

Doesn't Corrode

A common problem with using steel pipe is that moisture inside the system will cause pipes to rust from the inside out. Even if your compressed air system has a moisture trap, there will be some moisture in the system and corrosion will occur. Even galvanized steel pipe will corrode since not all pipes are galvanized both inside and out.

Corrosion causes several problems, beginning with air flow restricted by a rough inner surface caked with deposits caused by corrosion build up. Additionally, loose scale deposits collect over time and create pressure drops. This makes the air compressor work harder to maintain the pressure of the system. In extreme cases, loose scale can completely clog a line or damage equipment connected to a line. Of course, corrosion and loose scale affects air quality and makes it unsuitable for applications that require clean air.

The Case for Aluminum Piping

- Aluminum pipe systems are much easier to install and to modify than steel or copper pipe systems. Labor savings of 50% can be achieved, since aluminum pipe is supplied ready for use. Preparations beyond cutting, deburring, and chamfering are not required, nor are special tools needed. Aluminum pipe is calibrated, meaning that its diameter is strictly controlled. This means that associated quick connect components will fit securely.
- Aluminum pipe is much lighter than steel or copper pipe and doesn't require threading or soldering.
- The compressed air provided by a system built with aluminum piping is much cleaner than air delivered by a steel pipe system. Aluminum pipe systems can help meet the requirements of ISO 8573-1: 2010 air quality standards, should the application require it. Cleaner air also means lower maintenance costs.
- Aluminum pipe's corrosion-resistant properties mean optimal air flow, reduced energy costs, and better air quality.
- The fittings used with aluminum pipe systems fit securely and leak far less than the fittings used with threaded systems. This translates directly into energy savings and improved plant productivity.

Material	Advantages	Disadvantages	Connection Methods
\square Black Pipe	Low cost components Readily available Rated to high pressure Established (old) technology	Labor intensive Corrosion problems Prone to leaks Costly to repair Not easily modified Safety concerns	Threaded Welded Grooved Crimped
Galvanized Steel	Low cost components Readily available Rated to high pressure Established (old) technology	Labor intensive Corrosion problems Prone to leaks Costly to repair/Safety Concerns Not easily modified	Threaded Welded Grooved Crimped
Copper	Low cost components Readily available Resistant to corrosion Established (old) technology	Labor intensive Prone to leaks costly to repair Not easily modified Safety concerns	5 oldered Quick connect Crimped
	Low cost components Readily available Resistant to corrosion ughtweight	Labor intensive Prone to leaks Costly to repair (labor) incompatibility issues Safety concerns	Glued Fused Quick Connect
Extruded Aluminum	Corrosion resistant//ow pressure drop Lightweight/Dimensional integrity Resistant to mechanical shocks Easy to install and modify	Material cost Thermal expansion/contraction Lower pressure rating	Welded Grooved Quick Connect
Stainless Steel	Corrosion resistant/how pressure drop Chemical compatibility Rated to high pressure	Labor intensive Material costs Costly to repair (labor) Safety concerns	Threaded Welded Grooved Crimped Quick Connect

[^0] Plant Engineering. Retrieved from http://bit.ly/1rAGkyz

How does RTi Blue Piping Stack Up Compared to the Other Systems Available?

RTi Blue Piping

Competition
Copper

Full Bore Design
\qquad
Saves energy (A 14.5\% pressure drop uses 10\% additional energy), more flow available

Lower Install Costs
 One third the labor costs

YES
YES NO

Light-weight Piping YES NO
Easier installation

Modular Design
YES
Removable and reusable

Loop Built into Mainline Header Drops
YES NO
No need to build loops in mainline header
30-35\% Installed Cost Savings YES NOMore storage space, less friction, no leaks,

Exclusive Benefits of RTi Blue Piping?

RTi Blue Piping Has:	Competitor?
$1 / 2^{\prime \prime}$ Piping for Drops?	NO Smallest size $3 / 4^{\prime \prime \prime}$
$11 / 4^{\prime \prime}$ Piping \& Connectors?	NO Only $1 \frac{1}{4 \prime \prime}$ for mainline
$1 \mathbf{1 9}^{\prime}$ Piping Lengths?	NO Only 20^{\prime} lengths
Interchangeable with Prevost ${ }^{\text {TM } ? ~}$	YES
Single port manifold with an	
integral ball valve?	NO

Aluminum Pipe

Part Number	Sizing	
RTI-P34-20	20 mm	$3 / 4^{\prime \prime}$
RTI-P1-20	25 mm	$1^{\prime \prime}$
RTI-P114-20	32 mm	$1 \frac{1}{4} 4^{\prime \prime}$
RTI-P112-20	40 mm	$1 \frac{1122^{\prime \prime}}{}$
RTI-P2-20	50 mm	$2^{\prime \prime}$
RTI-P212-20	63 mm	$21 / 22^{\prime \prime}$
RTI-P12-13	16 mm	$1 / 2^{\prime \prime}$

Couplers

Part Number	Sizing	
RTI-PC12	16 mm	$1 / 2 "$
RTI-PC34	20 mm	$3 / 4^{\prime \prime}$
RTI-PC1	25 mm	$11^{\prime \prime}$
RTI-PC114	32 mm	$11 / 4^{\prime \prime}$
RTI-PC112	40 mm	$11 / 2^{\prime \prime}$
RTI-PC2	50 mm	$2^{\prime \prime}$
RTI-PC212	63 mm	$21 / 2^{\prime \prime}$

End Caps

Part Number	Sizing	
RTI-EC12	16 mm	$1 / 2^{\prime \prime}$
RTI-EC34	20 mm	$3 / 4^{\prime \prime}$
RTI-EC1	25 mm	1 1"
RTI-EC114	32 mm	$11 / 4^{\prime \prime}$
RTI-EC112	40 mm	$11 / 22^{\prime \prime}$
RTI-EC2	50 mm	$2 " 1$
RTI-EC212	63 mm	$21 / 22^{\prime \prime}$

45° Elbow

Part Number	Sizing	
RTI-E45-34	20 mm	$3 / 4^{\prime \prime}$
RTI-E45-1	25 mm	$11^{\prime \prime}$
RTI-E45-114	32 mm	$1 \frac{1}{1} 4^{\prime \prime}$
RTI-E45-112	40 mm	$1 \frac{1}{2 \prime \prime}$
RTI-E45-2	50 mm	$22^{\prime \prime}$
RTI-E45-212	63 mm	$21 / 2^{\prime \prime}$

Double Bend Aluminum Pipe

Part Number	Sizing	
RTI-DB12	16 mm	$1 / 22^{\prime \prime}$
RTI-DB34	20 mm	$3 / 4^{\prime \prime}$
RTI-DB1	25 mm	$1^{\prime \prime}$

Reduction Coupler

Part Number	Sizing	
RTI-RC1-34	$25 \mathrm{~mm} \times 20 \mathrm{~mm}$	1" x 3/4"
RTI-RC114-1	$32 \mathrm{~mm} \times 25 \mathrm{~mm}$	$11 / 4 " \times 1 "$
RTI-RC112-1	$40 \mathrm{~mm} \times 25 \mathrm{~mm}$	$11 / 2 " \times 1 "$
RTI-RC112-114	$40 \mathrm{~mm} \times 32 \mathrm{~mm}$	$1^{1 / 2 "} \times 1 \frac{1}{4 \prime}{ }^{\prime \prime}$
RTI-RC2-112	$50 \mathrm{~mm} \times 40 \mathrm{~mm}$	2" x 1112 "

90° Elbow

Part Number	Sizing	
RTI-E90-12	16 mm	1/2"
RTI-E90-34	20 mm	3/4"
RTI-E90-1	25 mm	1"
RTI-E90-114	32 mm	$11 / 4 "$
RTI-E90-112	40 mm	$11 / 2{ }^{1}$
RTI-E90-2	50 mm	2"
RTI-E90-212	63 mm	$21 / 2 "$

Aluminum 90° Male NPT x Pipe

Part Number	Sizing	
RTI-E90A-34-12	$20 \mathrm{~mm} \times 1 / 22^{\prime \prime}$ NPT	$3 / 4^{\prime \prime} \times 1 / 22^{\prime \prime}$
RIT-E90A-1-12	$25 \mathrm{~mm} \times 1 / 2^{\prime \prime}$ NPT	$1^{\prime \prime} \times 1 / 22^{\prime \prime}$
RTI-E90A-1-34	$25 \mathrm{~mm} \times 3 / 4^{\prime \prime}$ NPT	$1^{\prime \prime} \times 3 / 44^{\prime \prime}$

Equal Tee

Part Number	Sizing	
RTI-T12	16 mm	$1 / 2^{\prime \prime}$
RTI-T34	20 mm	$3 / 4^{\prime \prime}$
RTI-T1	25 mm	1 "
RTI-T114	32 mm	$11 / 4 "$
RTI-T112	40 mm	$111 / 2^{\prime \prime}$
RTI-T2	50 mm	2 "
RTI-T212	63 mm	$21 / 2^{\prime \prime}$

Female NPT Tee

Part Number	Sizing	
RTI-FT34-12	$20 \mathrm{~mm} \times 1 / 22^{\prime \prime}$ NPT	$3 / 4 " \times 1 / 2 "$
RTI-FT1-12	$25 \mathrm{~mm} \times 1 / 22^{\prime \prime}$ NPT	1 " $\times 1 / 2 "$

Reducing Tee

Part Number	Sizing	
RTI-RT34-12	$20 \mathrm{~mm} \times 16 \mathrm{~mm}$	$3 / 4{ }^{\prime \prime} \times 1 / 2{ }^{1 /}$
RTI-RT1-12	$25 \mathrm{~mm} \times 16 \mathrm{~mm}$	$1^{\prime \prime} \times 1 / 2^{\prime \prime}$
RTI-RT1-34	$25 \mathrm{~mm} \times 20 \mathrm{~mm}$	1" ${ }^{3 / 4}{ }^{\prime \prime}$
RTI-RT114-34	$32 \mathrm{~mm} \times 20 \mathrm{~mm}$	$11 / 4 " x 3 / 4{ }^{\prime \prime}$
RTI-RT114-1	$32 \mathrm{~mm} \times 25 \mathrm{~mm}$	$11 / 4 \mathrm{4} \times 1{ }^{\prime \prime}$
RTI-RT112-1	$40 \mathrm{~mm} \times 25 \mathrm{~mm}$	$11 / 2{ }^{1 / 2} \times 1$
RTI-RT112-114	$40 \mathrm{~mm} \times 32 \mathrm{~mm}$	$11 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$
RTI-RT2-114	$50 \mathrm{~mm} \times 32 \mathrm{~mm}$	2" x $11 / 4$ "
RTI-RT2-112	$50 \mathrm{~mm} \times 40 \mathrm{~mm}$	2" x $11 / 2$ "
RTI-RT212-112	$63 \mathrm{~mm} \times 40 \mathrm{~mm}$	$21 / 2^{\prime \prime} \times 1 \frac{1}{1 / 2}$
RTI-RT212-2	$63 \mathrm{~mm} \times 50 \mathrm{~mm}$	21/2" $\times 2^{\prime \prime}$

Nipple Socket, Male NPT

Part Number	Sizing	
RTI-NS12-12	$16 \mathrm{~mm} \times 1 / 2 \mathrm{~L}$ NPT	$1 / 2{ }^{17} \times 1 / 2^{\prime \prime}$
RTI-NS34-12	$20 \mathrm{~mm} \times 1 / 2 \mathrm{k}$ NPT	$3 / 44^{11} \times 1 / 2^{\prime \prime}$
RTI-NS34-34	$20 \mathrm{~mm} \times 3 / 44^{\prime \prime}$ NPT	$3 / 44^{\prime \prime} \times 1 / 4^{\prime \prime}$
RTI-NS1-12	$25 \mathrm{~mm} \times 1 / 22^{\prime \prime}$ NPT	$1^{\prime \prime} \times 1 / 2{ }^{\prime \prime}$
RTI-NS1-34	$25 \mathrm{~mm} \times 3 / 4 \mathrm{4}$ NPT	$1{ }^{\prime \prime} \times 3 / 4 "$
RTI-NS1-1	$25 \mathrm{~mm} \times 1$ 1" NPT	1" x 1"
RTI-NS114-1	$32 \mathrm{~mm} \times 1{ }^{\text {" NPT }}$	$1^{1 / 4 " 1} \times 1 "$
RTI-NS114-114	$32 \mathrm{~mm} \times 11 / 4 \mathrm{4}$ NPT	$11 / 4 "$ x $11 / 4 "$
RTI-NS112-1	$40 \mathrm{~mm} \times 1{ }^{\text {" }}$ NPT	$11 / 2^{\prime \prime} \times 1{ }^{\prime \prime}$
RTI-NS112-114	$40 \mathrm{~mm} \times 11 / 4{ }^{\text {" }}$ NPT	$11^{1 / 2} 2^{\prime \prime} \times 11 / 4^{\prime \prime}$
RTI-NS112-112	$40 \mathrm{~mm} \times 11 / 2^{\prime \prime}$ NPT	$11 / 2^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$
RTI-NS2-112	$50 \mathrm{~mm} \times 1 \frac{1}{2 \prime 2}{ }^{\prime \prime}$ NPT	2" x $11 / 2$ "
RTI-NS2-2	$50 \mathrm{~mm} \times 2 \mathrm{2}$ NPT	2" x ${ }^{\prime \prime}$
RTI-NS212-2	$63 \mathrm{~mm} \times 2 \mathrm{2}$ " NPT	$21 / 22^{\prime \prime} \times{ }^{\prime \prime}$

Aluminum Nipple Socket, Female NPT

Part Number	Sizing	
RTI-FNSA34-12	$20 \mathrm{~mm} \mathrm{x} \mathrm{1/2"} \mathrm{NPT}$	$3 / 4{ }^{\prime \prime} \times 1 / 2$ "
RTI-FNSA34-34	$20 \mathrm{~mm} \times 3 / 4$ " NPT	$3 / 4 "$ x 3/4"
RTI-FNSA1-1	$25 \mathrm{~mm} \times 1$ " NPT	1" x 1"
RTI-FNSA114-114	$32 \mathrm{~mm} \times 1$ 1/4" NPT	$11 / 4$ " $\times 1 \frac{1}{4} 4^{\prime \prime}$
RTI-FNSA112-112	$40 \mathrm{~mm} \times 1$ 1/2" ${ }^{\text {NPT }}$	$11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$
RTI-FNSA2-2	$50 \mathrm{~mm} \times 2 \mathrm{2}$ NPT	2" x 2"

Aluminum Nipple Socket, Male NPT

Part Number	Sizing	
RTI-NSA34-12	$20 \mathrm{~mm} \times 1 / 2 \mathrm{~s}$ NPT	$3 / 4{ }^{11} \times 1 / 2{ }^{17}$
RTI-NSA34-34	$20 \mathrm{~mm} \times 3 / 4 \mathrm{4}$ NPT	$3 / 4{ }^{\prime \prime} \times 3 / 4{ }^{\prime \prime}$
RTI-NSA1-1	$25 \mathrm{~mm} \times 1{ }^{\text {" }}$ NPT	1" x 1"
RTI-NSA114-114	$32 \mathrm{~mm} \times 11 / 4^{\prime \prime}$ NPT	$11 / 4^{\prime \prime} \times 1 \frac{1}{4 \prime \prime}$
RTI-NSA112-112	$40 \mathrm{~mm} \times 1 \frac{1}{2 \prime 2}$ " NPT	$11 / 22^{\prime \prime} \times 1 \frac{1}{1 / 2}$
RTI-NSA2-2	$50 \mathrm{~mm} \times 2 \mathrm{2}$ NPT	2" $\times 2$ "

Quick Branch Droplet, Female NPT

Part Number	Sizing	
RTI-QBT1-12	$25 \mathrm{~mm} \times 1 / 2^{\prime \prime}$ NPT	$1^{\prime \prime} \mathrm{x}^{1 / 2}{ }^{\text {" }}$
RTI-QBT114-12	32 mm x ½" NPT	$11 / 4{ }^{1 / 2} \times 1 / 2^{\prime \prime}$
RTI-QBT112-12	40 mm x ½" NPT	$11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$
RTI-QBT112-34	$40 \mathrm{~mm} \times 3 / 4{ }^{\prime \prime}$ NPT	$11 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$
RTI-QBT2-12	$50 \mathrm{~mm} \times 1$ 12" NPT	$2^{\prime \prime} \times 1 / 2{ }^{1 /}$
RTI-QBT2-34	$50 \mathrm{~mm} \times 3 / 4{ }^{\prime \prime}$ NPT	$2^{\prime \prime} \times 3 / 4{ }^{\prime \prime}$
RTI-QBT212-12	63 mm x ½" NPT	$21 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$
RTI-QBT212-34	$63 \mathrm{~mm} \times 3 / 4{ }^{\prime \prime}$ NPT	$21 / 2{ }^{\prime \prime} \times 3 / 4 "$

Quick Branch Droplet

Part Number	Sizing	
RTI-QB1-12	$25 \mathrm{~mm} \times 16 \mathrm{~mm}$	$1^{\prime \prime} x^{1 / 2 "}$
RTI-QB114-12	$32 \mathrm{~mm} \times 16 \mathrm{~mm}$	$11 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$
RTI-QB112-12	$40 \mathrm{~mm} \times 16 \mathrm{~mm}$	$11 / 2{ }^{1 / 1} \times 1 / 2^{\prime \prime}$
RTI-QB2-12	$50 \mathrm{~mm} \times 16 \mathrm{~mm}$	2" x 1/2"

Aluminum Manifolds (90 ${ }^{\circ}$)

Part Number	Sizing
RTI-DPM34-5-38	$3 / 4^{\prime \prime}$ inlet $\times(5)^{3 / 8 "}$ outlets
RTI-DPM34-5-12	$3 / 4^{\prime \prime}$ inlet $\times(5)^{1 / 2 "}$ outlets

Aluminum Manifolds (45 ${ }^{\circ}$)

Part Number	Sizing
RTI-M12-1-12	1 Port Manifold, $1 / 2{ }^{\text {" }}$ in, (1) $1 / 2$ " out
RTI-M12-3-12	3 Port Manifold, $1 / 2{ }^{\text {" }}$ in, (3) $1 / 2$ " out
RTI-M12-4-12	4 Port Manifold, $1 / 2{ }^{\text {" }}$ in, (4) $1 / 2$ " out
RTI-M34-4-1234	4 Port Manifold, $3 / 44^{\prime \prime}$ in, (2) $1 / 22^{\prime \prime} \times(2) 3 / 4{ }^{\text {" }}$ out
RTI-M34-5-1234	5 Port Manifold, 3/4" in, (3) $1 / 22^{\prime \prime} \times(2) 3 / 4{ }^{\text {" }}$ out
RTI-M34-7-1234	7 Port Manifold, 3/4" in, (5) $1 / 2{ }^{\prime \prime} \times$ (2) $3 / 4$ " out

Flexible Hose

Part Number	Sizing	
RTI-FEH34	20 mm	$3 / 4^{\prime \prime}$
RTI-FEH1	25 mm	1
RTI-FEH114	32 mm	$1 \frac{1}{4} 4^{\prime \prime}$
RTI-FEH112	40 mm	$1 \frac{1}{2} 2^{"}$
RTI-FEH2	50 mm	$2^{\prime \prime}$

Pipe Support Brackets

Part Number	Sizing	
RTI-PB12 (10 pack)	16 mm	$1 / 22^{\prime \prime}$
RTI-PB34 (10 pack)	20 mm	$3 / 4^{\prime \prime}$
RTI-PB1 (10 pack)	25 mm	1 1"
RTI-PB114 (10 pack)	32 mm	$11 / 4^{\prime \prime}$
RTI-PB112 (10 pack)	40 mm	$11 / 2^{\prime \prime}$
RTI-PB2 (10 pack)	50 mm	$22^{\prime \prime}$
RTI-PB212 (10 pack)	63 mm	$21 / 2{ }^{\prime \prime}$

Flexible Hose, NPT Threaded

Part Number	Sizing
RTI-FEH34-NPT	$3 / 4^{\prime \prime}$ NPT
RTI-FEH1-NPT	$1^{\prime \prime}$ NPT

Bracket Wall Spacers

Part Number	Sizing	
RTI-BWS34-114 (10 pack)	$20-32 \mathrm{~mm}$	$3 / 4^{\prime \prime}$ to $1 / 4^{\prime \prime}$
RTI-BWS112-212 (10 pack)	$40-63 \mathrm{~mm}$	$1 \frac{1}{2 \prime \prime}$ to $21 / 2^{\prime \prime}$

Ball Valve, Female NPT

Part Number	Sizing	
RTI-BVF12-12	$16 \mathrm{~mm} \times 1 / 2^{\prime \prime}$ NPT	$1 / 22^{1 \prime} \times 1 / 2^{" 1}$

Nut Wrench

Part Number	Sizing	
WRENCH $16 / 20$	$16-20 \mathrm{~mm}$	$1 / 2^{\prime \prime}$ to $3 / 4^{\prime \prime}$
WRENCH $25 / 32$	$25-32 \mathrm{~mm}$	1 " to $1 \frac{1}{4 \prime \prime}$
WRENCH $40 / 50$	$40-50 \mathrm{~mm}$	$1 \frac{1}{2 \prime}$ " to $2 "$
WRENCH 63	63 mm	$21 / 2^{\prime \prime}$

Ball Valve, Male NPT

Part Number	Sizing	
RTI-BVM12-12	$16 \mathrm{~mm} \times 1 / 22^{\prime \prime} \mathrm{NPT}$	$1 / 22^{\prime \prime} \times 1 / 2^{\prime \prime}$

Male Threaded Spigot

Part Number	Sizing	
RTI-MTS34-12	$20 \mathrm{~mm} \times 112 \mathrm{z}$ " NPT	$3 / 4{ }^{17} \times 1 / 2{ }^{\prime \prime}$
RTI-MTS34-34	$20 \mathrm{~mm} \times 3 / 4 \mathrm{4}$ NPT	$3 / 4{ }^{11} \times 3 / 4{ }^{\prime \prime}$
RTI-MTS1-1	$25 \mathrm{~mm} \times 1{ }^{\text {" }}$ NPT	1" $\times 1$ "
RTI-MTS112-112	$40 \mathrm{~mm} \times 11 / 2 \mathrm{~L}$ NPT	$11 / 22^{\prime \prime} \times 11 / 2{ }^{\prime \prime}$
RTI-MTS212-2	$63 \mathrm{~mm} \times 2 \mathrm{2}$ NPT	$21 / 2^{\prime \prime} \times{ }^{\prime \prime}$

Pipe/Fitting Insertion Meter

Part Number	Sizing	
RTI-PFIM	$16-80 \mathrm{~mm}$	$1 / 22^{\prime \prime}$ to 3"

Chamfering Cone Piece \& Chamfering Tool

Part Number	Sizing	
RTI-CT12-2	$16-50 \mathrm{~mm}$	$1 / 22^{\prime \prime}$ to $2^{\prime \prime}$
RTI-CT212-4	$63-110 \mathrm{~mm}$	$21 / 2^{\prime \prime}$ to $4 "$

10 YEAR WARRANTY

Following the high quality performances of RTi products, we offer our customers a 10 year warranty against possible damages due to faulty materials of aluminum pipes or blue pipe fittings.

Guarantee terms and conditions: Use original parts and spare parts only. Execute the installation following the instructions and guide lines supplied in this catalogue. A test certificate must be done after first plant test. Do no use components beyond their service limits. Protect the plant from shocks, vibrations or corrosive situations. Before forwarding any complaint, check the damaged parts and/or the site conditions. Guarantee is limited to the component replacement only. Complaints are to be shipped to RTi following the standard procedure. Submit all complaints to RTi following the standard procedure.

Installation Guide

Tools needed:

- Chamfering cone*
- Drill or hole saw
- Marker/pen*
- Pipe specific wrench*
- Screwdriver
- Pipecutter
- Depth gauge*
- Gasket lubricant*
- Deburring tool
- Universal plier*
- Hexagonal wrench

1. Make a neat and straight cut at the desired size. Afterwards check the pipe's surface condition; there should not be any visible scratches, abrasions or dents which may cause leaks. The cut has to be done as straight as possible (90° to the pipe axis).

$2 \begin{aligned} & \text { Chamfer the pipe's external surfaces and remove any } \\ & \text { rough edges along the inside diameter. Remove rough }\end{aligned}$ edges, pieces, and dust which may be present in the pipe to avoid future air line issues.

Fully tighten the ring nut to the area indicated by tightening the indicator arrow.

Unscrew the nut, which you just tightened, by making half a counter clock-wise turn. This will increase the distance between the body and the nut in the area indicated by the arrow. Mark the depth indicated by the socket depth gauge on the pipe with marker/pen.

Mark the depth indicated by the socket depth meter on the pipe.

Installation Guide, cont'd.

5
Slide the pipe into the fitting, pushing it until it stops at the end of the socket. Lubricate the end of the pipe and contact surface of O-ring with liquid dish soap and water, or petroleum grease. Do not use oils or greases of questionable compatibility. Contact factory if needed.

6 Fully tighten the ring nut by hand, or rotate up to 180° (at most!) using pin wrench.

7
A correct fitting tightening will bring the ring nut base to stop around the middle of the tightening indicator. The nut brake will act as anti-screwing in the case of light vibrations. Do not over tighten!

Flow Rates/Pressure Drop Tables

Note: Perfect Air ${ }^{\circledR}$ blue pipe systems are mainly dedicated to compressed air distribution up to a maxiumum pressure of 200 PSI

The charts and graphs below illustrate the maximum suggested flow rate to prevent high velocity which will cause:
a. Increase of turbolence with relative pressure drop;
b. excessive noise above legal limits;
c. reintrainment of any condensed liquid in the pipeline.

PIPE FLOW RA TE TABLES (given for 100 ' of pipe)

- Table 1a

- Table 2a

PRESSURE DROP 1/2" PIPE (cfm)

- Table 1b

- Table 2b

- Table 4a

- Table 5a

- Table 6a

MAX FLOW RATE 2-1/2" PIPE (cfm)

- Table 4b

- Table 5b

- Table 6b

Chemical Compatibility

CHEMICAL AGENTS

| ACETALDEHYDE | B | D | A | A | A | D |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACETIC ACID 20\% | B | B | B | A | D | B |
| ACETONE | A | D | D | A | A | D |
| ACETYLENE | A | B | A | A | A | A |
| AMMONIUM | B | A | D | A | A | B |
| BENZENE | B | D | A | B | B | C |
| BOREACID | | | | | | |

OK^{*}	OK	OK
	OK	
	OK	
OK	OK	OK
OK	OK	OK
OK^{*}	OK	OK

| BURNT LIM |
| :--- | :--- |
| BUTANOL |
| BUTTER |

OK	OK	OK
OK		
OK	OK	OK
OK	OK	OK
OK	OK	OK
OK		OK
OK	OK	OK
OK		OK

Compatibility with RTi Blue Pipe Materials

CLHORIC ACID (20\%)
DIESEL GAS

ETHANOL
ETHYLENE GLYCOL
FATACIDS

ETHANOL
FATYENE GLYCOL
FATIDS

FORMALDEHYDE 40\%
FUEL OIL
GLUCOSE
GLYCERINE
HEPTAN
HYDROGEN (GAS)
METHYLALCOHOL
MILK
MINERAL OIL

MOTOR OIL | NATURAL GAS (METHANE) |
| :--- |
| NITRIC ACID ($20 \%)$ |

NIRIC ACID (20%)	C	D	A	B	D
A					
NITROBENZENE	A	D	B	B	B
	-				
OLEIC ACID	A	B	B	A	B
A					
OXALIC ACID	A	C	A	A	B
A					
PETROL	B	A	A	A	A
A					
PHENOL	A	D	A	B	D
D					
POTASSIUM PERMANGANATE	B	C	A	B	D
A					
PROPYLENE GLYCOL	B	A	A	B	A
A					
SILICONE	A	A	A	A	A
A					
SUGAR	A	A	A	A	A
A					
SULPHURIC ACID	C	D	B	D	D
A					
TANNIC ACID	C	A	A	A	C
A					
TARTARIC ACID	B	A	A	B	B
A					
TOLUENE	A	D	C	B	B
D					
UREA	B	B	A	B	A
A					
VASELINE	A	A	A	A	A
AINEGAR	A	B	A	A	A
A					
XYLENE	A	D	B	B	B
A					

BUTTER
CARBON DIOXIDE
CARBON MOOXXIDE
CAUSTIC SODA
CHLOROFORM
CITRIC ACID
CLHORIC ACID ($20 \%)$
DIESEL GAS
ETHANOL

	B	A	A	B	A
	A	A	A	B	B
A					
	A	A	A	B	A
A					
	A	B	A	A	A
A					

- B

B	B	A	A	A	A
A	A	A	A	A	-
A	A	A	A	A	A
A	A	A	A	A	A
A	A	A	A	A	-
A	A	A	A	A	A
B	A	C	A	B	A
A	A	A	A	A	A
A	A	A	A	A	-
A	A	A	A	A	-
A	A	A	A	A	A
C	D	A	B	D	A
B	D	B	B	B	-
A	B	B	A	B	A
A	C	A	A	B	A
B	A	A	A	A	A
A	D	A	B	D	D
B	C	A	B	D	A
B	A	A	B	A	A
A	A	A	A	A	A
A	A	A	A	A	A
C	D	B	D	D	A
C	A	A	A	C	A
B	A	A	B	B	A
A	D	C	B	B	D
B	B	A	B	A	A
A	A	A	A	A	A
D	B	A	A	A	A
A	D	B	B	B	A

[^0]: McDonough, K. (2013, November). Five reasons why aluminum piping makes sense for compressed air systems.

